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The Big Picture: 1

SCANNER

stream of
characters

stream of
tokens
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The Big Picture: 2
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parse tree
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The Big Picture: 3
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The Big Picture: 4
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The Big Picture: 5
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Scanning: 1

• Takes a stream of characters and identifies tokens from
the lexemes.

• Eliminates comments and redundant whitepace.

• Keeps track of line numbers and column numbers and
passes them as parameters to the other phases to en-
able error-reporting to the user.



Home Page

Title Page

JJ II

J I

Page 15 of 100

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Scanning: 2
• Whitespace: A sequence of space, tab, newline,

carriage-return, form-feed characters etc.

• Lexeme: A sequence of non-whitespace characters de-
limited by whitespace or special characters (e.g. oper-
ators like +, -, *).

• Examples of lexemes.

– reserved words, keywords, identifiers etc.

– Each comment is usually a single lexeme

– preprocessor directives
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Scanning: 3
• Token: A sequence of characters to be treated as a

single unit.

• Examples of tokens.

– Reserved words (e.g. begin, end, struct, if etc.)

– Keywords (integer, true etc.)

– Operators (+, &&, ++ etc)

– Identifiers (variable names, procedure names, pa-
rameter names)

– Literal constants (numeric, string, character con-
stants etc.)

– Punctuation marks (:, , etc.)
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Scanning: 4
• Identification of tokens is usually done by a Determinis-

tic Finite-state automaton (DFA).

• The set of tokens of a language is represented by a
large regular expression.

• This regular expression is fed to a lexical-analyser gen-
erator such as Lex, Flex or ML-Lex.

• A giant DFA is created by the Lexical analyser genera-
tor.
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Scanning: 5
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The Big Picture
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Syntax Analysis
Consider the following two languages over an alphabet
A = {a, b}.

R = {anbn|n < 100}
P = {anbn|n > 0}

• R may be finitely represented by a regular expression
(even though the actual expression is very long).

• However, P cannot actually be represented by a regular
expression

• A regular expression is not powerful enough to repre-
sent languages which require parenthesis matching to
arbitrary depths.

• All high level programming languages require an under-
lying language of expressions which require parenthe-
ses to be nested and matched to arbitrary depth.
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CF-Grammars:
Definition

A context-free grammar (CFG) G = 〈N, T , P, S〉 consists
of

• a set N of nonterminal symbols,

• a set T of terminal symbols or the alphabet,

• a set P of productions or rewrite rules,

• each production is of the form X −→ α, where

– X ∈ N is a nonterminal and

– α ∈ (N ∪ T )∗ is a string of terminals and nontermi-
nals

• a start symbol S ∈ N .
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CFG: Example
G = 〈{S}, {a, b}, P, S〉, where S −→ ab and S −→ aSb
are the only productions in P .
Derivations look like this:

S ⇒ ab

S ⇒ aSb ⇒ aabb

S ⇒ aSb ⇒ aaSbb ⇒ aaabbb

L(G), the languagegenerated by G is {anbn|n > 0}.

Actually can be proved by induction on the length and struc-
ture of derivations.
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CFG: Empty word
G = 〈{S}, {a, b}, P, S〉, where S −→ SS | aSb | ε
generates all sequences of matching nested parentheses,
including the empty word ε.

A leftmost derivation might look like this:

S ⇒ SS ⇒ SSS ⇒ SS ⇒ aSbS ⇒ abS ⇒ abaSb . . .

A rightmost derivation might look like this:

S ⇒ SS ⇒ SSS ⇒ SS ⇒ SaSb ⇒ Sab ⇒ aSbab . . .

Other derivations might look like God alone knows what!

S ⇒ SS ⇒ SSS ⇒ SS ⇒ . . .

Could be quite confusing!
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CFG: Derivation trees
1

Derivation sequences

• put an artificial order in which productions are fired.

• instead look at treesof derivations in which we may think
of productions as being fired in parallel.

• There is then no highlighting in red to determine which
copy of a nonterminal was used to get the next member
of the sequence.

• Of course, generation of the empty word ε must be
shown explicitly in the tree.
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CFG: Derivation trees
2
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S S
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a b a b
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Derivation tree of

abaabb

ε
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CFG: Derivation trees
3
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CFG: Derivation trees
4
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Ambiguity: 1
E → I | C | E+E | E∗E
I → y | z
C → 4

Consider the sentence y + 4 ∗ z.

EE
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Ambiguity: 2
E → I | C | E+E | E∗E
I → y | z
C → 4

Consider the sentence y + 4 ∗ z.

E

E E*

E

EE +
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Ambiguity: 3
E → I | C | E+E | E∗E
I → y | z
C → 4

Consider the sentence y + 4 ∗ z.

E

E

E

E*

E+

I

E

E

E

E +

EI

*
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Ambiguity: 4
E → I | C | E+E | E∗E
I → y | z
C → 4

Consider the sentence y + 4 ∗ z.

E

E

E

E*

E+

I C

I

z

E

E

E

E +

E

C

I

y

I

*
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Ambiguity: 5
E → I | C | E+E | E∗E
I → y | z
C → 4

Consider the sentence y + 4 ∗ z.

E

E

E

E*

E+

I

y

C

4

I

z

E

E

E

E +

E

C

I

y

4

I

z

*
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Parsing: 0
−

/

b ( )

a −

a

a / b

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E
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Parsing: 1
−

/

b ( )a

− a / b

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

Shifta

Principle:
Reduce 
whenever possible.
Shift only when
reduce is
impossible
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Parsing: 2
−

/

b ( )a

− a / b

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

D Reduce by r5
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Parsing: 3
−

/

b ( )a

− a / b

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

T Reduce by r4
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−

/

b ( )a

− a / b

r1. E E T
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r5 D | | E
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Parsing: 5
−

/

b ( )a

−

a / b

r1. E E T
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r3 T T D

r4 T D

r5 D | | E

E

Shift
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/
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−

Shift instead
of reduce here!

Principle:modified

Reduce whenever possible, but
but depending upon 

lookahead

Shift−reduce 

conflict
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a − a

D

/ b

TT

−r1. E E T

r2 E T

/r3 T T D b ( )aD | | Er5

r4 T D

E

D



Home Page

Title Page

JJ II

J I

Page 73 of 100

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Parse Trees: 6
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Parse Trees: 7
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Parse Trees: 8
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Parsing: Summary: 1
• All high-level languages are designed so that they may

be parsed in this fashion with only a single token look-
ahead.

• Parsers for a language can be automatically con-
structed by parger-generators such as Yacc, Bison, ML-
Yacc.

• Shift-reduce conflicts if any, are automatically detected
and reported by the parser-generator.

• Shift-reduce conflicts may be avoided by suitably
redesigning the context-free grammar.
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Parsing: Summary: 2
• Very often shift-reduce conflicts may occur because

of the prefix problem. In such cases many parser-
generators resolve the conflict in favour of shifting.

• There is also a possiblility of reduce-reduce conflicts.
This usually happens when there is more than one non-
terminal symbol to which the contents of the stack may
reduce.

• A minor reworking of the grammar to avoid redundant
non-terminal symbols will get rid of reduce-reduce con-
flicts.

The Big Picture
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Semantic Analysis: 1
• Every Programming langauge can be used to program

any computable function, assuming of course, it has

– unbounded memory, and

– unbounded time

• The parser of a programming language provides the
frameworkwithin which the target code is to be gener-
ated.

• The parser also provides a structuringmechanism that
divides the task of code generation into bits and pieces
determined by the individual nonterminals and produc-
tion rules.

• However, contex-free grammars are not powerful
enough to represent all computable functions. Exam-
ple, the language {anbncn|n > 0}.



Home Page

Title Page

JJ II

J I

Page 79 of 100

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Semantic Analysis: 2
• There are context-sensitive aspects of a program that

cannot be represented/enforced by a context-free gram-
mar definition. Examples include

– correspondence between formal and actual param-
eters

– type consistency between declaration and use.

– scope and visibility issues with respect to identifiers
in a program.
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An Attribute Grammar

E

T

T F

/

n
F

( )
E

E T
−

T
F

F
n

n4

4

4

4

1

1

1

3 2

23

1

1

3

E0 → E1−T B E0.val := sub(E1.val, T.val)

E → T B E.val := T.val

T0 → T1/F B T0.val := div(T1.val, F.val)

T → F B T.val := F.val

F → (E) B F.val := E.val

F → n B F.val := n.val
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Inherited Attributes: 0
C-style declarations generating int x,y, z.

D → T L T → int | float
L → L,I | I I → x | y | z

T

int

L

z

L

L

x

I

y

I

D

I

,

,

x

D L T I

y z int

,
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Inherited Attributes: 1
C-style declarations generating int x,y, z.

D → T L T → int | float
L → L,I | I I → x | y | z

T

int

L

z

L

L

x

I

y

I

D

I

,

,

x

D L T I

y z int

int

int
,
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Inherited Attributes: 2
C-style declarations generating int x,y, z.

D → T L T → int | float
L → L,I | I I → x | y | z

T

int

L

z

L

L

x

I

y

I

D

I

,

,

x

D L T I

y z int

int int

int

int
,
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Inherited Attributes: 3
C-style declarations generating int x,y, z.

D → T L T → int | float
L → L,I | I I → x | y | z

T

int

L

z

L

L

x

I

y

I

D

I

,

,

x

D L T I

y z int

int int

int

int
,

int
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Inherited Attributes: 4
C-style declarations generating int x,y, z.

D → T L T → int | float
L → L,I | I I → x | y | z

T

int

L

z

L

L

x

I

y

I

D

I

,

,

x

D L T I

y z int

int int

int

int
,

int

int

int
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Inherited Attributes: 5
T

int

L

z

L
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I

y

I
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Inherited Attributes: 6
C-style declarations generating int x,y, z.

D → T L T → int | float
L → L,I | I I → x | y | z

T

int

L

z

L

L

x

I

y

I

D

I

,

,

x

D L T I

y z int

int int

int

int
,

int

int

int

int

int

int

int

int
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Inherited Attributes: 7
C-style declarations generating int x,y, z.

D → T L T → int | float
L → L,I | I I → x | y | z

T

int

L

z

L

L

x

I

y

I

D

I

,

,

x

D L T I

y z int

int int

int

int
,

int

int

int

int

int

int

int

int

int
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An Attribute Grammar

T

int

L

z

L

L

x

I

y

I

D

I

,

int

int
,

int

int

int

int

int

int

int

int

int

D → TL B L.in := T.type

T → int B T.type := int.int

T → float B T.type := float.f loat

L0 → L1,I B L1 := L0.in

L → I B I.in := L.in

I → id B id.type := I.in
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Abstract Syntax: 0
E → E−T | T
T → T/F | F
F → n | (E)

Suppose we want to evaluate an expression (4− 1)/2.
What we actually want is a tree that looks like this:

4 1

2−−

/
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Evaluation: 0

4 1

2−−

/
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Evaluation: 1

4 1

2−−

/
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Evaluation: 2

2

/

3
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Evaluation: 3

2

/

3



Home Page

Title Page

JJ II

J I

Page 112 of 100

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Evaluation: 4

1

But what we actually get during parsing is a tree that looks
like . . .
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Abstract Syntax: 1
. . . THIS! E

T

T F

/

n
F

( )
E

E T
−

T
F

F
n

n

n n

/

n−−
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Abstract Syntax: 2
We use attribute grammar rules to construct the abstract
syntax tree (AST)!.
But in order to do that we first require two procedures for
tree construction.

makeLeaf(literal ) : Creates a node with label literal and re-
turns a pointer to it.

makeBinaryNode(opr, opd1, opd2): Creates a node with la-
bel opr (with fields which point to opd1 and opd2) and
returns a pointer to the newly created node.

Now we may associate a synthesized attribute called ptr
with each terminal and nonterminal symbol which points to
the root of the subtree created for it.
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Abstract Syntax: 3
E0 → E1−T B E0.ptr := makeBinaryNode(−, E1.ptr, T.ptr)

E → T B E.ptr := T.ptr

T0 → T1/F B T0.ptr := makeBinaryNode(/, T1.ptr, F.ptr)

T → F B T.ptr := F.ptr

F → (E) B F.ptr := E.ptr

F → n B F.ptr := makeLeaf (n.val)

The Big Picture
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Symbol Table:1
• The store house of context-sensitive and run-time infor-

mation about every identifier in the source program.

• All accesses relating to an identifier require to first find
the attributes of the identifier from the symbol table

• Usually organized as a hash table – provides fast ac-
cess.

• Compiler-generated temporaries may also be stored in
the symbol table
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Symbol Table:2
Attributes stored in a symbol table for each identifier:

• type

• size

• scope/visibility information

• base address

• addresses to location of auxiliary symbol tables (in case
of records, procedures, classes)

• address of the location containing the string which ac-
tually names the identifier and its length in the string
pool
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Symbol Table:3
• A symbol table exists through out the compilation and

run-time.

• Major operations required of a symbol table:

– insertion

– search

– deletions are purely logical (depending on scope
and visibility) and not physical

• Keywords are often stored in the symbol table before
the compilation process begins.
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Symbol Table:4
Accesses to the symbol table at every stage of the compi-
lation process,

Scanning: Insertion of new identifiers.

Parsing: Access to the symbol table to ensure that an
operand exists (declaration before use).

Semantic analysis:
• Determination of types of identifiers from declara-

tions

• type checking to ensure that operands are used in
type-valid contexts.

• Checking scope, visibility violations.
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Symbol Table:5
IR generation: . Memory allocation and relativea address

calculation.

Optimization: All memory accesses through symbol table

Target code: Translation of relative addresses to absolute
addresses in terms of word length, word boundary etc.

The Big picture
ai.e.relativeto a base address that is known only at run-time
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Intermediate
Representation

Intermediate representations are important for reasons of
portability.

• (more or less)independent of specific features of the
high-level language.

Example. Java byte-code for any high-level language.

• (more or less)independent of specific features of any
particular target architecture (e.g. number of registers,
memory size)

– number of registers

– memory size

– word length
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IR Properties: 1
1. It is fairly low-level containing instructions common to

all target architectures and assembly languages.

How low can you stoop? . . .

2. It contains some fairly high-level instructions that are
common to most high-level programming languages.

How high can you rise?

3. To ensure portability

• an unbounded number of variables and memory lo-
cations

• no commitment to Representational Issues

4. To ensure type-safety

• memory locations are also typed according to the
data they may contain,

• no commitment is made regarding word boundaries,
and the structure of individual data items.

Next
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IR: Representation?
• No commitment to word boundaries or byte boundaries

• No commitment to representation of

– int vs. float,

– float vs. double,

– packed vs. unpacked,

– strings – where and how?.

Back to IR Properties:1
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IR: How low can you
stoop?

• most arithmetic and logical operations, load and store
instructions etc.

• so as to be interpreted easily,

• the interpreter is fairly small,

• execution speeds are high,

• to have fixed length instructions (where each operand
position has a specific meaning).

Back to IR Properties:1
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IR: How high can you
rise?

• typed variables,

• temporary variables instead of registers.

• array-indexing,

• random access to record fields,

• parameter-passing,

• pointers and pointer management

• no limits on memory addresses

Back to IR Properties:1
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A typical instruction
set: 1

Three address code: A suite of instructions. Each instruc-
tion has at most 3 operands.

• an opcode representing an operation with at most 2
operands

• two operands on which the binary operation is per-
formed

• a target operand, which accumulates the result of the
(binary) operation.

If an operation requires less than 3 operands then one or
more of the operands is made null.
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A typical instruction
set: 2

• Assignments (LOAD-STORE)

• Jumps (conditional and unconditional)

• Procedures and parameters

• Arrays and array-indexing

• Pointer Referencing and Dereferencing
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A typical instruction
set: 2

• Assignments (LOAD-STORE)

– x := y bop z , where bop is a binary operation

– x := uop y , where uop is a unary operation

– x := y , load, store, copy or register transfer

• Jumps (conditional and unconditional)

• Procedures and parameters

• Arrays and array-indexing

• Pointer Referencing and Dereferencing
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A typical instruction
set: 2

• Assignments (LOAD-STORE)

• Jumps (conditional and unconditional)

– goto L – Unconditional jump,

– x relop y goto L – Conditional jump, where
relop is a relational operator

• Procedures and parameters

• Arrays and array-indexing

• Pointer Referencing and Dereferencing
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A typical instruction
set: 2

• Assignments (LOAD-STORE)

• Jumps (conditional and unconditional)

• Procedures and parameters

– call p n , where n is the number of parameters

– return y , return value from a procedures call

– param x , parameter declaration

• Arrays and array-indexing

• Pointer Referencing and Dereferencing
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A typical instruction
set: 2

• Assignments (LOAD-STORE)

• Jumps (conditional and unconditional)

• Procedures and parameters

• Arrays and array-indexing

– x := a[i] – array indexing for r-value

– a[j] := y – array indexing for l-value

Note: The two opcodes are different depending on
whether l-valueor r-value is desired. x and y are always
simple variables

• Pointer Referencing and Dereferencing
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A typical instruction
set: 2

• Assignments (LOAD-STORE)

• Jumps (conditional and unconditional)

• Procedures and parameters

• Arrays and array-indexing

• Pointer Referencing and Dereferencing

– x := ˆy – referencing: set x to point to y

– x := *y – dereferencing: copy contents of location
pointed to by y into x

– *x := y – dereferencing: copy r-valueof y into the
location pointed to by x

Picture
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Pointers
x

x

*y

y

@z

*x

*x @z

*z
z

*z
z

x := ^y

x := *y

*x := y

*y@y

@z

*z

*z

x y

yx

x y

z

x

yy

*y

*y*y

@z
z
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IR: Generation
• Can be generated by recursive traversal of the abstract

syntax tree.

• Can be generated by syntax-directed translation as fol-
lows:

For every non-terminal symbol N in the grammar of the
source language there exist two attributes

N.place , which denotes the address of a temporary
variable where the result of the execution of the gen-
erated code is stored

N.code, which is the actual code segment generated.

• In addition a global counter for the instructions gener-
ated is maintained as part of the generation process.

• It is independent of the source language but can ex-
press target machine operations without committing to
too much detail.
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IR: Infrastructure
Given an abstract syntax tree T, with T also denoting its
root node.

T.place address of temporary variable where result of exe-
cution of the T is stored.

newtempreturns a freshvariable name and also installs it in
the symbol table along with relevant information

T.code the actual sequence of instructions generated for
the tree T.

newlabelreturns a label to mark an instruction in the gener-
ated code which may be the target of a jump.

emit emits an instructions (regarded as a string).
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IR: Infrastructure
Colour and font coding of IR code generation

• Green: Nodes of the Abstract Syntax Tree

• Brown : Characters and strings of the Intermediate
Representation

• Red: Variables and data structures of the languagein
which the IR code generator is written

• blue: Names of relevant proceduresused in IR code gen-
eration.

• Black: All other stuff.
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IR: Example

E → id B

E.place := id.place;
E.code := emit()

E0 → E1 − E2 B

E0.place := newtemp;
E0.code := E1.code

|| E2.code
|| emit(E0.place := E1.place − E2.place)
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IR: Example

S → id := E B

S.code := E.code
|| emit(id.place:=E.place)

S0 → while E do S1 B

S0.begin := newlabel;
S0.after := newlabel;
S0.code := emit(S0.begin:)

|| E.code
|| emit(if E.place= 0 goto S0.after)
|| S1.code
|| emit(gotoS0.begin)
|| emit(S0.after:)
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IR: Example

S → id := E B

S.code := E.code
|| emit(id.place:=E.place)

S0 → while E do S1 B

S0.begin := newlabel;
S0.after := newlabel;
S0.code := emit(S0.begin:)

|| E.code
|| emit(if E.place= 0 goto S0.after)
|| S1.code
|| emit(gotoS0.begin)
|| emit(S0.after:)
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IR: Generation
While generating the intermediate representation, it is
sometimes necessary to generate jumps into code that has
not been generated as yet (hence the address of the label
is unknown). This usually happens while processing

• forward jumps

• short-circuit evaluation of boolean expressions

It is usual in such circumstances to either fill up the empty
label entries in a second pass over the the code or through
a process of backpatching (which is the maintenance of
lists of jumps to the same instruction number), wherein the
blank entries are filled in once the sequence number of the
target instruction becomes known.
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A Calling Chain
Main program

Globals

Procedure P2
Locals of P2

Procedure P21

Locals of P21

Body of P21

Call P21

Body of P2

Call P21

Locals of P1

Procedure P1

Body of P1

Call P2

Main body

Call P1
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Run-time Structure: 1
Main program

Globals

Main body

Procedure P2

Locals of P2

Procedure P21

Locals of P21

Body of P2

Procedure P1

Locals of P1

Body of P1

Globals

Body of P21
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Run-time Structure: 2
Main program

Globals

Main body

Procedure P2

Locals of P2

Procedure P21

Locals of P21

Body of P2

Procedure P1

Locals of P1

Body of P1

Globals

Formal par of P1

Locals of P1

Return address to Main
Dynamic link to Main

Static link to Main

Body of P21
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Run-time Structure: 3
Main program

Globals

Main body

Procedure P2

Locals of P2

Procedure P21

Locals of P21

Body of P2

Procedure P1

Locals of P1

Body of P1

Globals

Formal par of P1

Locals of P1

Return address to Main

Formal par P2

Locals of P2

Return address to last of P1

Dynamic link to Main

Dynamic link to last P1

Static link to Main

Static link to last P1

Body of P21
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Run-time Structure: 4
Main program

Globals

Main body

Procedure P2

Locals of P2

Procedure P21

Locals of P21

Body of P2

Procedure P1

Locals of P1

Body of P1

Globals

Formal par of P1

Locals of P1

Return address to Main

Formal par P2

Locals of P2

Return address to last of P1

Formal par P21

Locals of P21

Return address to last of P2

Dynamic link to Main

Dynamic link to last P1

Dynamic link to last P2

Static link to Main

Static link to last P1

Static link last P2

Body of P21
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Run-time Structure: 5
Main program

Globals

Main body

Procedure P2

Locals of P2

Procedure P21

Locals of P21

Body of P2

Procedure P1

Locals of P1

Body of P1

Globals

Formal par of P1

Locals of P1

Return address to Main

Formal par P2

Locals of P2

Return address to last of P1

Formal par P21

Locals of P21

Return address to last of P2

Formal par P21

Locals of P21

Return address to last of P21

Dynamic link to Main

Dynamic link to last P1

Dynamic link to last P2

Dynamic link to last P21

Static link to Main

Static link to last P1

Static link last P2

Static link to last P2

Body of P21
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