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Local Search Technique

Let F denote the set of all feasible solutions for a
problem instance I.

Define a function N : F → 2F which associates for
each solution, a set of neighboring solutions.

Start with some feasible solution and iteratively
perform “local operations”. Suppose SC ∈ F is the
current solution. We move to any solution SN ∈ N (SC)
which is strictly better than SC .

Output SL, a locally optimal solution for which no
solution in N (SL) is strictly better than SL itself.
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Example: MAX-CUT

Given a graph G = (V,E),

Partition V into A,B s.t. #edges between A and B is
maximized.

Note that MAX-CUT is ≤ |E|.
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Local Search for MAX-CUT

Algorithm Local Search for MAX-CUT.

1. A,B ← any partition of V ;
2. While ∃ u ∈ V such that in-degree(u) > out-

degree(u),
do

if(u ∈ A), Move u to B

else, Move u to A

done
3. return A,B
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Neighborhood Function

Solution Space: the set of all partitions.

Neighborhood Function: Neighbors of a partition
(A,B) are all the partitions (A′, B′) obtained by
interchanging the side of a single vertex.
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Analysis for MAX-CUT

A B

u

1. in-d(u) ≤ out-d(u) (Apply Conditions for Local
Optimality)

2.
∑

u∈V in-d(u) ≤
∑

u∈V out-d(u) (Consider suitable set

of local operations)

3. #Internal Edges ≤ #Cut Edges

#Cut-edges ≥ |E|
2
⇒ 2-approximation (Infer)
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Local Search for Approximation

Folklore: the 2-approx for MAX-CUT

Fürer and Raghavachari: Additive Approx for Min.
Degree Spanning Tree.

Lu and Ravi: Constant Factor approx for Spanning
Trees with maximum leaves.

Könemann and Ravi: Bi-criteria approximation for
Bounded Degree MST.

Quite successful as a technique for Facility Location
and Clustering problems. Started with Korupolu et. al.
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The k-median problem

We are given n points in a metric space.
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The k-median problem

We are given n points in a metric space.

u
v

w

d(w, v)d(u, w)

≤ d(u, w) + d(w, v)

d(u, v) ≥ 0, d(u, u) = 0, d(u, v) = d(v, u)
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The k-median problem

We are given n points in a metric space.
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The k-median problem

We are given n points in a metric space.

We want to identify k “medians” such that the sum of dis-

tances of all the points to their nearest medians is mini-

mized.
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The k-median problem

We are given n points in a metric space.

We want to identify k “medians” such that the sum of lengths

of all the red segments is minimized.
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A local search algorithm

Identify a median and a point that is not a median.
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A local search algorithm

And SWAP tentatively!
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A local search algorithm

Perform the swap, only if the new solution is “better” (has
less cost) than the previous solution.
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A local search algorithm

Perform the swap, only if the new solution is “better” (has
less cost) than the previous solution.

Stop, if there is no swap that improves the solution.
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The algorithm

Algorithm Local Search.

1. S ← any k medians
2. While ∃ s ∈ S and s′ 6∈ S such that,

cost(S − s + s′) < cost(S),
do S ← S − s + s′

3. return S
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The algorithm

Algorithm Local Search.

1. S ← any k medians
2. While ∃ s ∈ S and s′ 6∈ S such that,

cost(S − s + s′) < (1− ǫ)cost(S),
do S ← S − s + s′

3. return S
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Main theorem

The local search algorithm described above computes
a solution with cost (the sum of distances) at most 5
times the minimum cost.
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Main theorem

The local search algorithm described above computes
a solution with cost (the sum of distances) at most 5
times the minimum cost.

Korupolu, Plaxton, and Rajaraman (1998) analyzed a
variant in which they permitted adding, deleting, and
swapping medians and got (3 + 5/ǫ) approximation by
taking k(1 + ǫ) medians.
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Some notation

Sj

j
s

S = { |S| = k NS(s)

cost(S) = the sum of lengths of all the red segments

}
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Some more notation

} |O| = k

NO(o)

O = {

o
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Some more notation

NO(o)

o

s1
s2

s4 s3

No
s1

No
s4

No
s3

No
s2

N o
s = NO(o) ∩NS(s)
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Local optimality of S

Since S is a local optimum solution,
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Local optimality of S

Since S is a local optimum solution,

We have,

cost(S − s + o) ≥ cost(S) for all s ∈ S, o ∈ O.
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Local optimality of S

Since S is a local optimum solution,

We have,

cost(S − s + o) ≥ cost(S) for all s ∈ S, o ∈ O.

We shall add k of these inequalities (chosen carefully)
to show that,

cost(S) ≤ 5 · cost(O)

> >
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What happens when we swap < s, o>?

o

s

oi

Noi
s

No
s

NS(s)

All the points in NS(s) have to be rerouted to one of the
facilities in S − {s}+ {o}.

We are interested two types of clients: those belonging to

N o
s and those not belonging to N o

s .
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Rerouting j ∈ N o
s

?
s

o

j
Sj

Oj

oi

Noi
s

No
s

NS(s)

Rerouting is easy. Send it to o. Change in cost = Oj − Sj.
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Rerouting j 6∈ N o
s

Look at NO(oi).

s

oi

N
oi
s?

o
j

s
s′

j′

Oj′

Sj′

N
oi
s

oi

Oj

Map j to a unique j ′ ∈ NO(oi) outside N oi
s and route via j ′.

Change in cost = Oj + Oj′ + Sj′ − Sj.

Ensure that every client is involved in exactly one reroute.

Therefore, the mapping need to be one-to-one and onto.
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Desired mapping of clients inside NO(o)

NO(o)

o

s1
s2

s4 s3

No
s1

No
s4

No
s3

No
s2

We desire a permutation π : NO(o)→ NO(o) that satisfies
the following property:

Client j ∈ N o
s should get mapped to j ′ ∈ NO(o), but outside

N o
s .
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Notion of Capture

NO(o)

o

s1
s2

s4 s3

No
s1

No
s4

No
s3

No
s2

We say that s ∈ S captures o ∈ O if

|N o
s | >

|NO(o)|

2
.

Note: A facility o ∈ O is captured precisely when a mapping as we described is not

feasible.

Capture graph
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A mapping π

NO(o)

o

s1
s2

s4 s3

No
s1

No
s4

No
s3

No
s2

We consider a permutation π : NO(o)→ NO(o) that
satisfies the following property:

if s does not capture o then a point j ∈ N o
s should get

mapped outside N o
s .

The 2011 School on Approximability, Bangalore – p.29/51



A mapping π

NO(o)

o

s1
s2

s4 s3

No
s1

No
s4

No
s3

No
s2

We consider a permutation π : NO(o)→ NO(o) that
satisfies the following property:

if s does not capture o then a point j ∈ N o
s should get

mapped outside N o
s .
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A mapping π

NO(o)

o

s1
s2

s4 s3

No
s1

No
s4

No
s3

No
s2

i + l/2

|NO(o)| = l

i l21

π
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Capture graph

O

S

l

≥ l/2

Construct a bipartite graph G = (O,S,E) where there is an
edge (o, s) if and only if s ∈ S captures o ∈ O.

Capture
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Swaps considered

O

S

l

≥ l/2
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Swaps considered

O

S

l

≥ l/2

“Why consider the swaps?”
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Properties of the swaps considered

O

S

l

≥ l/2

If 〈s, o〉 is considered, then s does not capture any
o′ 6= o.
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Properties of the swaps considered

O

S

l

≥ l/2

If 〈s, o〉 is considered, then s does not capture any
o′ 6= o.

Any o ∈ O is considered in exactly one swap.
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Properties of the swaps considered

O

S

l

≥ l/2

If 〈s, o〉 is considered, then s does not capture any
o′ 6= o.

Any o ∈ O is considered in exactly one swap.

Any s ∈ S is considered in at most 2 swaps.
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Focus on a swap 〈s, o〉

o
s

Consider a swap 〈s, o〉 that is one of the k swaps defined

above. We know cost(S − s + o) ≥ cost(S).
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Upper bound on cost(S − s + o)

In the solution S − s + o, each point is connected to
the closest median in S − s + o.
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Upper bound on cost(S − s + o)

In the solution S − s + o, each point is connected to
the closest median in S − s + o.

cost(S − s + o) is the sum of distances of all the points
to their nearest medians.
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Upper bound on cost(S − s + o)

In the solution S − s + o, each point is connected to
the closest median in S − s + o.

cost(S − s + o) is the sum of distances of all the points
to their nearest medians.

We are going to demonstrate a possible way of
connecting each client to a median in S − s + o to get
an upper bound on cost(S − s + o).
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Upper bound on cost(S − s + o)

sNO(o)
o

Points in NO(o) are now connected to the new median o.
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Upper bound on cost(S − s + o)

sNO(o)
o

Thus, the increase in the distance for j ∈ NO(o) is at most

Oj − Sj.

The 2011 School on Approximability, Bangalore – p.38/51



Upper bound on cost(S − s + o)

sNO(o)
o

j

Consider a point j ∈ NS(s) \NO(o).
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Upper bound on cost(S − s + o)

sNO(o)
o

j

π(j) s′

Consider a point j ∈ NS(s) \NO(o).

Suppose π(j) ∈ NS(s′). (Note that s′ 6= s.)
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Upper bound on cost(S − s + o)

sNO(o)
o

j

π(j) s′

Consider a point j ∈ NS(s) \NO(o).

Suppose π(j) ∈ NS(s′). (Note that s′ 6= s.)

Connect j to s′ now.
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Upper bound on cost(S − s + o)

j

s′

π(j)

Sπ(j)Oπ(j)

Oj

o′

New distance of j is at most Oj + Oπ(j) + Sπ(j).
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Upper bound on cost(S − s + o)

j

s′

π(j)

Sπ(j)Oπ(j)

Oj

o′

New distance of j is at most Oj + Oπ(j) + Sπ(j).

Therefore, the increase in the distance for
j ∈ NS(s) \NO(o) is at most

Oj + Oπ(j) + Sπ(j) − Sj.
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Upper bound on the increase in the cost

Lets try to count the total increase in the cost.
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Upper bound on the increase in the cost

Lets try to count the total increase in the cost.

Points j ∈ NO(o) contribute at most

(Oj − Sj).
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Upper bound on the increase in the cost

Lets try to count the total increase in the cost.

Points j ∈ NO(o) contribute at most

(Oj − Sj).

Points j ∈ NS(s) \NO(o) contribute at most

(Oj + Oπ(j) + Sπ(j) − Sj).
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Upper bound on the increase in the cost

Lets try to count the total increase in the cost.

Points j ∈ NO(o) contribute at most

(Oj − Sj).

Points j ∈ NS(s) \NO(o) contribute at most

(Oj + Oπ(j) + Sπ(j) − Sj).

Thus, the total increase is at most,
∑

j∈NO(o)

(Oj − Sj) +
∑

j∈NS(s)\NO(o)

(Oj + Oπ(j) + Sπ(j) − Sj).
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Upper bound on the increase in the cost

∑

j∈NO(o)

(Oj − Sj) +
∑

j∈NS(s)\NO(o)

(Oj + Oπ(j) + Sπ(j) − Sj)
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Upper bound on the increase in the cost

∑

j∈NO(o)

(Oj − Sj) +
∑

j∈NS(s)\NO(o)

(Oj + Oπ(j) + Sπ(j) − Sj)

≥ cost(S − s + o)− cost(S)
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Upper bound on the increase in the cost

∑

j∈NO(o)

(Oj − Sj) +
∑

j∈NS(s)\NO(o)

(Oj + Oπ(j) + Sπ(j) − Sj)

≥ cost(S − s + o)− cost(S)

≥ 0
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Plan

We have one such inequality for each swap 〈s, o〉.

∑

j∈NO(o)

(Oj−Sj)+
∑

j∈NS(s)\NO(o)

(Oj+Oπ(j)+Sπ(j)−Sj) ≥ 0.
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Plan

We have one such inequality for each swap 〈s, o〉.

∑

j∈NO(o)

(Oj−Sj)+
∑

j∈NS(s)\NO(o)

(Oj+Oπ(j)+Sπ(j)−Sj) ≥ 0.

There are k swaps that we have defined.
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Plan

We have one such inequality for each swap 〈s, o〉.

∑

j∈NO(o)

(Oj−Sj)+
∑

j∈NS(s)\NO(o)

(Oj+Oπ(j)+Sπ(j)−Sj) ≥ 0.

There are k swaps that we have defined.

O

S

l

≥ l/2
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Plan

We have one such inequality for each swap 〈s, o〉.

∑

j∈NO(o)

(Oj−Sj)+
∑

j∈NS(s)\NO(o)

(Oj+Oπ(j)+Sπ(j)−Sj) ≥ 0.

There are k swaps that we have defined.

O

S

l

≥ l/2

Lets add the inequalities for all the k swaps and see
what we get!

The 2011 School on Approximability, Bangalore – p.45/51



The first term . . .





∑

j∈NO(o)

(Oj − Sj)



+
∑

j∈NS(s)\NO(o)

(Oj+Oπ(j)+Sπ(j)−Sj) ≥ 0.
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The first term . . .





∑

j∈NO(o)

(Oj − Sj)



+
∑

j∈NS(s)\NO(o)

(Oj+Oπ(j)+Sπ(j)−Sj) ≥ 0.

Note that each o ∈ O is considered in exactly one swap.

The 2011 School on Approximability, Bangalore – p.46/51



The first term . . .





∑

j∈NO(o)

(Oj − Sj)



+
∑

j∈NS(s)\NO(o)

(Oj+Oπ(j)+Sπ(j)−Sj) ≥ 0.

Note that each o ∈ O is considered in exactly one swap.
Thus, the first term added over all the swaps is

∑

o∈O

∑

j∈NO(o)

(Oj − Sj)
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The first term . . .





∑

j∈NO(o)

(Oj − Sj)



+
∑

j∈NS(s)\NO(o)

(Oj+Oπ(j)+Sπ(j)−Sj) ≥ 0.

Note that each o ∈ O is considered in exactly one swap.
Thus, the first term added over all the swaps is

∑

o∈O

∑

j∈NO(o)

(Oj − Sj)

=
∑

j

(Oj − Sj)
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The first term . . .





∑

j∈NO(o)

(Oj − Sj)



+
∑

j∈NS(s)\NO(o)

(Oj+Oπ(j)+Sπ(j)−Sj) ≥ 0.

Note that each o ∈ O is considered in exactly one swap.
Thus, the first term added over all the swaps is

∑

o∈O

∑

j∈NO(o)

(Oj − Sj)

=
∑

j

(Oj − Sj)

= cost(O)− cost(S).
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The second term . . .

∑

j∈NO(o)

(Oj−Sj)+





∑

j∈NS(s)\NO(o)

(Oj + Oπ(j) + Sπ(j) − Sj)



 ≥ 0.
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The second term . . .

∑

j∈NO(o)

(Oj−Sj)+





∑

j∈NS(s)\NO(o)

(Oj + Oπ(j) + Sπ(j) − Sj)



 ≥ 0.

Note that
Oj + Oπ(j) + Sπ(j) ≥ Sj.

The 2011 School on Approximability, Bangalore – p.47/51



The second term . . .

∑

j∈NO(o)

(Oj−Sj)+





∑

j∈NS(s)\NO(o)

(Oj + Oπ(j) + Sπ(j) − Sj)



 ≥ 0.

Note that
Oj + Oπ(j) + Sπ(j) ≥ Sj.

Thus
Oj + Oπ(j) + Sπ(j) − Sj ≥ 0.
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The second term . . .

∑

j∈NO(o)

(Oj−Sj)+





∑

j∈NS(s)\NO(o)

(Oj + Oπ(j) + Sπ(j) − Sj)



 ≥ 0.

Note that
Oj + Oπ(j) + Sπ(j) ≥ Sj.

Thus
Oj + Oπ(j) + Sπ(j) − Sj ≥ 0.

Thus the second term is at most
∑

j∈NS(s)

(Oj + Oπ(j) + Sπ(j) − Sj).
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The second term . . .

Note that each s ∈ S is considered in at most two swaps.
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The second term . . .

Note that each s ∈ S is considered in at most two swaps.

Thus, the second term added over all the swaps is at most

2
∑

s∈S

∑

j∈NS(s)

(Oj + Oπ(j) + Sπ(j) − Sj)
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The second term . . .

Note that each s ∈ S is considered in at most two swaps.

Thus, the second term added over all the swaps is at most

2
∑

s∈S

∑

j∈NS(s)

(Oj + Oπ(j) + Sπ(j) − Sj)

= 2
∑

j

(Oj + Oπ(j) + Sπ(j) − Sj)
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The second term . . .

Note that each s ∈ S is considered in at most two swaps.

Thus, the second term added over all the swaps is at most

2
∑

s∈S

∑

j∈NS(s)

(Oj + Oπ(j) + Sπ(j) − Sj)

= 2
∑

j

(Oj + Oπ(j) + Sπ(j) − Sj)

= 2

[

∑

j

Oj +
∑

j

Oπ(j) +
∑

j

Sπ(j) −
∑

j

Sj

]
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The second term . . .

Note that each s ∈ S is considered in at most two swaps.

Thus, the second term added over all the swaps is at most

2
∑

s∈S

∑

j∈NS(s)

(Oj + Oπ(j) + Sπ(j) − Sj)

= 2
∑

j

(Oj + Oπ(j) + Sπ(j) − Sj)

= 2

[

∑

j

Oj +
∑

j

Oπ(j) +
∑

j

Sπ(j) −
∑

j

Sj

]

= 4 · cost(O).
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Putting things together

0 ≤
∑

〈s,o〉





∑

j∈NO(o)

(Oj − Sj) +
∑

j∈NS(s)\NO(o)

(Oj + Oπ(j) + Sπ(j) −
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Putting things together

0 ≤
∑

〈s,o〉





∑

j∈NO(o)

(Oj − Sj) +
∑

j∈NS(s)\NO(o)

(Oj + Oπ(j) + Sπ(j) −

≤ [cost(O)− cost(S)] + [4 · cost(O)]
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Putting things together

0 ≤
∑

〈s,o〉





∑

j∈NO(o)

(Oj − Sj) +
∑

j∈NS(s)\NO(o)

(Oj + Oπ(j) + Sπ(j) −

≤ [cost(O)− cost(S)] + [4 · cost(O)]

= 5 · cost(O)− cost(S).
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Putting things together

0 ≤
∑

〈s,o〉





∑

j∈NO(o)

(Oj − Sj) +
∑

j∈NS(s)\NO(o)

(Oj + Oπ(j) + Sπ(j) −

≤ [cost(O)− cost(S)] + [4 · cost(O)]

= 5 · cost(O)− cost(S).

Therefore,
cost(S) ≤ 5 · cost(O).
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A tight example
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A tight example
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cost(S) = 4 · (k − 1)/2 + (k + 1)/2 = (5k − 3)/2
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A tight example

22

0 0

22

0 0
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(k − 1)

· · ·

O

S
· · ·

cost(S) = 4 · (k − 1)/2 + (k + 1)/2 = (5k − 3)/2

cost(O) = 0 + (k + 1)/2 = (k + 1)/2
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Future directions

We do not have a good understanding of the structure
of problems for which local search can yield
approximation algorithms.

Starting point could be an understanding of the
success of local search techniques for the curious
capacitated facility location (CFL) problems.

For CFL problems, we know good local search
algorithms. But, no non-trivial approximations known
using other techniques like greedy, LP rounding etc.
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